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SUMMARY

A new stabilized �nite element method for the Stokes problem is presented. The method is obtained
by modi�cation of the mixed variational equation by using local L2 polynomial pressure projections.
Our stabilization approach is motivated by the inherent inconsistency of equal-order approximations
for the Stokes equations, which leads to an unstable mixed �nite element method. Application of
pressure projections in conjunction with minimization of the pressure–velocity mismatch eliminates this
inconsistency and leads to a stable variational formulation.
Unlike other stabilization methods, the present approach does not require speci�cation of a stabiliza-

tion parameter or calculation of higher-order derivatives, and always leads to a symmetric linear system.
The new method can be implemented at the element level and for a�ne families of �nite elements on
simplicial grids it reduces to a simple modi�cation of the weak continuity equation. Numerical results
are presented for a variety of equal-order continuous velocity and pressure elements in two and three
dimensions. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The focus of this study is a stabilized �nite element method for the Stokes problem based
on local L2 polynomial pressure projections. The projections are introduced to address a
fundamental inconsistency present for elements employing equal-order approximation of ve-
locity and pressure.
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The origins of this inconsistency can be explained by inspecting the mixed variational
form of the Stokes equations. There, stability of the weak equations results from a special
relationship between the velocity and pressure spaces, which ensures that the pressure space
coincides with the range of the divergence operator. One can show that (see Reference [1, p.
81]) this special relationship is equivalent to the inf–sup condition [2]. It is well-known that
a discrete version of this condition is necessary and su�cient for stable mixed �nite element
approximations of the Stokes problem; see References [2, 1], or Reference [3]. A discrete
inf–sup condition forces pressure and velocity �nite element spaces into a relationship that
mimics the continuous case. Because for equal-order �nite element pairs the range of the
divergence is a piecewise polynomial space of one degree less than the pressure space, it is
intuitively clear that such pairs will never satisfy the discrete inf–sup condition.
The same inconsistency exists for equal-order approximations of compressible problems,

where pressure is proportional to the divergence of the velocity. For example, in a six-node
triangular element with quadratic approximation of velocity and pressure, the spatial variation
of pressure is linear rather than quadratic as implied by the element formulation.
These observations prompt application of element based pressure projections in the mixed

bilinear form as a way to eliminate the approximation inconsistency. This idea can be further
justi�ed by noting that there is no such inconsistency for the stable Taylor–Hood (P2-P1)
element formulation. However, it is clear that elimination of the pressure–velocity inconsis-
tency alone may not be enough to ensure stable approximation, because a pair such as P1-P0
is formally ‘consistent’, but unstable. Thus, in our stabilization approach we supplement local
pressure projections by an additional term that penalizes pressure deviations from the ‘con-
sistent’ polynomial order. Our new method combines these two modi�cations of the mixed
bilinear form to provide a �nite element formulation of the Stokes problem that remains stable
and accurate for all equal-order velocity–pressure pairs.
The new stabilized method for the Stokes problem di�ers from existing approaches in

several important aspects. Unlike consistently stabilized methods; see References [4–9], and
the weakly consistent method of Bochev and Gunzburger [10], stabilization in our method is
accomplished without the use of the momentum equation residual. This eliminates the need
to calculate higher-order derivatives, to provide for their approximation in the lowest-order
case§ [11], and to specify a mesh-dependent stabilization parameter. Our method also retains
the symmetry of the original mixed problem. The only residual based stabilization that has the
same property is the Galerkin least-squares method [6]. However, this method is conditionally
stable and requires careful selection of the mesh-dependent parameter; see Reference [12].
A non-residual based stabilized method, motivated by fractional step algorithms for time-

dependent problems, has been proposed and studied in References [13–15]. This method
introduces the projection of the pressure gradient onto the velocity space as a new dependent
variable and uses the di�erence between these two �elds to relax the continuity equation.
While this approach has some similarity with our method, it still requires a choice of mesh-
dependent parameters, and leads to larger algebraic problems. Another important di�erence is
that pressure gradient projections into the velocity space are not local because this space is

§The problems with approximation of the second order terms in the momentum equation residual can be avoided by
reformulation of the problem as a �rst-order system. An example is the velocity–pressure–stress method
of Behr et al. [8]. However, this approach increases the number of the dependent variables by 3 and 6 in 2 and 3
dimensions, respectively.
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continuous, while our method employs projections into a discontinuous space and thus, can
be implemented at the element level.
Another example of non-residual based stabilization is the local and global pressure jump

formulation for Q1-P0 quadrilateral elements [16]. It is based on the idea of �ltering the spuri-
ous modes that pollute this particular �nite element pair. Use of projections onto macroelement
spaces has been proposed for stabilization of Q1-P0 and P1-P1 elements [17]. The present
method of stabilization involves polynomial projections over individual elements rather than
macroelements. As a result, the need for mesh decompositions into macroelements is avoided.
Penalty methods are another category of non-residual based regularizations; see [18–21].

They, however, di�er from stabilized methods in the sense that application of a penalty does
not circumvent the inf–sup condition and only serves to uncouple pressure from velocity. In
this sense, penalty methods should be viewed as solution, rather then stabilization procedures
for the mixed equations.
The formulation of the stabilized method is presented in Section 2 following an introduc-

tion to the nomenclature. Implementation details are presented in Section 3 and numerical
results are given in Section 4. Although numerical results are presented only for equal-order
continuous velocity and pressure elements, polynomial projections can also be used to stabi-
lize discontinuous pressure elements such as Q1-P0 and P1-P0. The stabilization, however, is
node-based rather than element-based. Formal error and stability analysis of the method will
be the subject of the forthcoming paper [22].

1.1. Nomenclature

In what follows, � denotes a simply connected bounded region in Rd; d=2; 3, with a Lip-
schitz continuous boundary �. Throughout the paper, we employ the usual notation Hl(�),
‖ · ‖l, (· ; ·)l, l¿0, for the Sobolev spaces of all functions having square integrable derivatives
up to order l on �, and the standard Sobolev norm and inner product, respectively. When
l=0 we will write L2(�) instead of H 0(�) and drop the index from the inner product desig-
nation. As usual, Hl

0(�) will denote the closure of C
∞
0 (�) with respect to the norm ‖ · ‖l and

L20(�) will denote the space of all square integrable functions with vanishing mean. Spaces
consisting of vector-valued functions will be denoted in bold face.
In this paper, we consider methods for the Stokes equations that use pressure and velocity

�nite element spaces of the same polynomial order and de�ned with respect to the same
partition Th of � into �nite elements �e. For instance, �e can be a hexahedron or a tetrahedron
in three dimensions, or a triangle or a quadrilateral in two dimensions. Let k be a non-negative
integer number. For simplicial elements we consider a�ne families of Lagrange �nite element
spaces

Pk = {uh ∈C 0(�) | uh
|�e ∈Pk(�e); ∀�e ∈Th} (1)

where Pk(�e) is the space of complete polynomials of degree k de�ned on the element �e.
For quadrilateral and hexahedral elements we consider the Lagrange spaces

Qk = {uh ∈C 0(�) | uh
|�e = ûh ◦ F−1; ûh ∈Qk(�̂e)} (2)

where �̂e is a reference element, F : �̂e �→�e is a bilinear or trilinear mapping, and Qk is the
space of all polynomials on �̂e whose degree does not exceed k in each co-ordinate direction.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:183–201



186 C. R. DOHRMANN AND P. B. BOCHEV

Note that unless �e is a parallelogram or a parallelepiped, uh is not a piecewise polynomial
function. For simplicity, unless there is a need to distinguish between simplicial and non-
simplicial elements, we will use the symbol Rk to denote both kinds of �nite element spaces.
In keeping with our earlier convention, vector valued �nite element spaces will be denoted
in bold face, e.g. Rk .
To de�ne the stabilized method we will need an L2 projection operator onto the discontin-

uous polynomial space

[Pm]= {qh ∈L2(�) | qh
|�e ∈Pm(�e); ∀�e ∈Th} (3)

where m is a non-negative integer number. In (3) Th can be a simplicial or a non-simplicial
partition of � into �nite elements. Given a function q∈L2(�) the projection operator �m :
L2(�) �→ [Pm] is de�ned by

�mq= qh ∈ [Pm]

if and only if ∫
�
rh(�mq − q) d�=0 ∀rh ∈ [Pm] (4)

We recall that for a p∈L2(�),

�mp=argmin
1
2

∫
�
(�mq − p)2 d�

Equation (4) is a necessary condition for the minimizer of this functional. Because [Pm] is
discontinuous, (4) uncouples into local element problems∫

�e

rh(�mq − q) d�e=0 ∀rh ∈Pm(�e); ∀�e ∈Th (5)

which can be solved independently of each other at the element level.

2. FORMULATION OF THE STABILIZED METHOD

We consider the incompressible Stokes problem

−��u+∇p= f in � (6)

∇ · u=0 in � (7)

augmented with the homogeneous velocity boundary condition

u=0 on � (8)

We assume � is a positive constant.
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The mixed variational form of (6)–(8) is to seek (u; p)∈H1
0(�)×L20(�) such that

Q(u; p; v; q)=F(v; q) ∀(v; q)∈H1
0(�)×L20(�) (9)

where

F(v) =
∫
�
f · v dx

Q(u; p; v; q) = A(u; v) + B(v; p) + B(u; q)
(10)

and

A(u; v)=
∫
�
�∇u : ∇v d�; B(v; p)= −

∫
�
p∇ · v d� (11)

To approximate (6)–(8) we consider the equal-order pair (Vh; Sh) where

Vh=Rk ∩H1
0(�) and Sh=Rk ∩ L20(�) (12)

Such a pair does not satisfy the inf–sup condition and restriction of (9) to (Vh; Sh) will result
in an unstable method. To stabilize the mixed form (10) we consider the projection operator
�k−1, the bilinear form

C(ph; qh)=
∫
�

1
�
(ph − �k−1ph)(qh − �k−1qh) d� (13)

and modify (10) to

Q̃(uh; ph; vh; qh)=A(uh; vh) + B(vh; �k−1ph) + B(uh; �k−1qh)− C(ph; qh) (14)

The stabilized method is to seek (uh; ph) in Vh × Sh, such that

Q̃(uh; ph; vh; qh)=F(vh; qh) ∀(vh; qh)∈Vh × Sh (15)

Application of the projection operator to the pressure test and trial functions serves to remove
the approximation inconsistency present for equal-order velocity and pressure spaces. The
role of the form C(· ; ·) is to further penalize pressure variation away from the range of the
divergence operator. This last term is crucial for the stability of the new method.

2.1. The method for a�ne �nite element spaces

Let us consider a simplicial partition Th and an a�ne family of �nite element spaces Rk . We
recall that such elements are a�ne equivalent to a single reference element [23, p. 87] and so
their nodes must be a�ne images of the reference element nodes. For example, if six-node
quadratic elements are used, the mid-edge nodes of each triangle must be centred. The same
applies to higher order Lagrange elements.
On each element Vh consists of functions that are complete polynomials of degree k. In

this case the divergence of a �eld vh ∈Vh is a discontinuous piecewise polynomial function
whose degree on each element does not exceed k − 1, that is,

∇ · vh ∈ [Pk−1]; ∀vh ∈Vh
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Using de�nition (4) of the projection operator, it is not hard to see that∫
�
(qh − �k−1qh)∇ · vh d�=0

for any vh in Vh. As a result, for simplicial triangulations

B(vh; �k−1qh)=B(vh; qh) (16)

and the modi�ed bilinear form (14) simpli�es to

Q̃(uh; ph; vh; qh)=A(uh; vh) + B(vh; ph) + B(uh; qh)− C(ph; qh) (17)

Therefore, for simplicial elements our method requires only the addition of the penalty form
C(· ; ·) to the mixed variational equation. The fact that for such elements the method reduces
to (17) further highlights the importance of this term in the formulation.
Consider now a case where Th is not simplicial. There are two possibilities. If Th contains

only parallelepipeds or parallelograms the �nite element space Rk is again an a�ne family
(assuming that all physical nodes, e.g. mid-edge nodes, are a�ne images of their reference
counterparts). The space Vh will consist of polynomial functions whose degree in each co-
ordinate direction does not exceed k. However, in this case the divergence of a �eld vh ∈Vh

is not a function in [Pk−1] and (16) does not hold. To obtain a similar simpli�cation for
non-simplicial partitions it is necessary to rede�ne the range of the projection operator to be
the discontinuous piecewise polynomial space [∇ · Vh]. With this modi�cation the stabilized
form again reduces to (17).
The second possibility is for Th to contain general hexahedral or quadrilateral elements.

Then, Rk is not an a�ne image of a polynomial space and Vh does not contain polynomials.
As a result, ∇·vh is not a polynomial function and validity of (16) would require a projection
operator whose range is not a polynomial space.
We see that in both cases, that is, a�ne �nite elements on non-simplicial partitions and non-

a�ne elements, it is necessary to rede�ne the range of the projection operator if a relationship
like (16) is desired. This strategy, however, would unduly complicate the method and for
this reason it is not pursued here. Instead, we explore another possibility which is to apply
projections only in the penalty term. This variant of our method corresponds to using the
simpli�ed bilinear form (17) in all occasions, including non-a�ne elements and non-simplicial
grids.

2.2. Connection with optimization problems

The mixed variational equation (9) is the �rst-order optimality condition for the saddle-point
(u; p) of the Lagrangian functional

L(v; q)=
1
2

∫
�
�|∇v|2 dx −

∫
�
q∇ · v dx −

∫
�
f · v dx (18)

The stabilized problem (15) is also related to an optimization problem. Consider the modi�ed
Lagrangian functional

L̃(v; q) =
1
2

∫
�
�|∇v|2 d�−

∫
�
�mq∇ · v d�−

∫
�
f · v d�− 1

2
‖�−1=2(q − �mq)‖20 (19)
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Using standard tools from the calculus of variations one can show that the variational equation
(15) is the �rst-order optimality system for this Lagrangian restricted to the �nite element
pair Vh × Sh.
Not all stabilized methods can be related to an optimization problem. The conditionally

stable Galerkin least-squares method [6] is one of the few stabilized methods that correspond to
an optimality system for some modi�cation of (18). The pressure-Poisson [10, 5], the Douglas–
Wang [7], and the pressure gradient projection method [13] are all examples of stabilized
methods that are not associated with an optimization setting. Consequently, these methods
cannot be derived starting from a modi�ed Lagrangian functional.
Because the last term in (19) resembles the term that appears in the penalized Lagrangian

L�(v; q)=
1
2

∫
�
�|∇v|2 d�−

∫
�
q∇ · v d�−

∫
�
f · v d�− �

2
‖q‖20 (20)

it is of interest to compare the two methods that result from these functionals. Taking �rst vari-
ations of (20) with respect to v and q gives the weak equation: seek (u�; p�) in H1

0(�)×L20(�)
such that

A(u�; v) + B(p�; v) = F(v) ∀v∈H1
0(�) (21)

B(q; u�) = �D(p�; q) ∀q∈L20(�) (22)

The second equation can be used to eliminate the pressure and to obtain an equation in terms
of u� only

A(u�; v) +
1
�

∫
�
(∇ · u�)(∇ · v) d�=F(v) ∀v∈H1

0(�) (23)

Discretization of (23) gives the classical penalty method for the Stokes equations. Even though
the pressure does not enter explicitly in (23), the well-posedness of the penalty problem is
still subject to an inf–sup condition between the velocity space Vh and an implicit pressure
space induced by the equation �p�= −∇·u�; see Reference [20] or [21]. If the pair consisting
of the velocity space and the induced pressure space is unstable, then the penalty method
may fail as � → 0. A classical example of such failure is the locking phenomena for linear
velocities, where the solution of (23) converges to the trivial solution when � → 0.
Instead of �rst eliminating the pressure and then discretizing (23) we could have started by

discretizing the mixed problem (21)–(22) and then eliminate the pressure from the discrete
equations. The resulting system would di�er from the one obtained by the eliminate and
discretize approach. In either case, however, the penalty approximation will be unstable if the
associated mixed equation is not stable. Consequently, the penalty approach cannot be used
to stabilize an unstable mixed method and in that sense it cannot be deemed a stabilization
procedure. The proper interpretation of the penalty method is that of a solution procedure for
the mixed method.
Consider now the stabilized Lagrangian (19). Taking the �rst variation of (19) with respect

to v and q gives the weak equation: seek (u; p) in H1
0(�)×L20(�) such that

A(u; v) + B(�mp; v) = F(v) ∀v∈H1
0(�) (24)

B(�mq; u) =C(p; q) ∀q∈L20(�) (25)
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The stabilized method (15) is obtained by restriction of this variational problem to an arbitrary
pair Vh × Sh of �nite element spaces for the velocity and the pressure. Besides the absence of
a penalty parameter, the principal di�erence between the penalty formulation (21)–(22) and
the stabilized problem (24)–(25) is that the pressure cannot be eliminated from the second
equation in (25). The reason is that C(· ; ·) vanishes for all pressures that are in the range of
the projection operator employed in the de�nition of this form.

3. IMPLEMENTATION

One of the principal strengths of the new stabilized method is that computation of the pres-
sure projections and the penalty form C(· ; ·) is completely local. As a result, the overhead
associated with the stabilization process is small.
To describe implementation details we consider an arbitrary element �e. The element matrix

generated by the unstabilized mixed form (9) can be expressed in the block form

Ke=

[
Ae BTe

Be 0

]
(26)

where the blocks Ae and Be are obtained from the bilinear forms A(· ; ·) and B(· ; ·), respec-
tively. The stabilized version of Ke can be expressed as

Kes=

[
Ae B̃Te

B̃e −Ce

]
(27)

where B̃e is a modi�ed version of Be obtained from B(�k−1qh; vh) and Ce is a symmetric
positive semide�nite matrix generated by the bilinear form C(· ; ·). A varying � can be ap-
proximated by a constant value in each element denoted by �e.
Let us �rst consider computation of Ce. The pressure in �e is approximated according to

ph(x)=pTe  (x) (28)

where pe is a vector of nodal pressures for the element,  (x) is a vector of shape functions
from Rk , and x is the position vector. To compute the L2 projection of ph we use the local
formula (5). Let the rows of the vector a(x) form a basis for [Pk−1] on �e so that on this
element

�k−1ph(x)= cTa(x) (29)

A direct calculation shows that

�k−1ph(x)=pTe E
T
e D

−1
e a(x) (30)

where

De=
∫
�e

a(x)aT(x) d�e; Ee=
∫
�e

a(x) T(x) d�e (31)
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To �nd Ce we substitute (30) and (28) into

1
�e

∫
�e

(ph − �k−1ph)(ph − �k−1ph) dx

which is the restriction of C(ph; ph) onto �e. A simple but tedious calculation leads to

Ce=
1
�e
(Me − ETe D

−1
e Ee) (32)

where

Me=
∫
�e

 (x) T(x) d�e (33)

A dimensionless stabilization parameter � could be introduced in (32) by replacing 1=�e with
�=�e. This modi�cation is not essential to our method and is not considered here.
Consider next computation of B̃e. The divergence of vh in the element is approximated

according to

∇ · vh=dT(x)ve (34)

where ve is a vector of nodal velocities for the element. To �nd B̃e we substitute this expression
and (30) into the restriction

−
∫
�e

�k−1ph∇ · vh dx

of B(�k−1ph; vh) to �e. This leads to

B̃e= − ETe D
−1
e Fe (35)

where

Fe=
∫
�e

a(x)dT(x) d�e (36)

The matrices B̃e and Ce can be calculated together with Ae using standard numerical integration
procedures for �nite elements.
Recall that the unmodi�ed matrix Be is given by

Be= −
∫
�e

 (x)dT(x) d�e (37)

From (16) it follows that for simplicial partitions Th

B̃e=Be

that is,

−
∫
�e

 (x)dT(x) d�e= −ETe D
−1
e

∫
�e

a(x)dT(x) d�e
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In this case, the element matrix of the stabilized method simpli�es to

Kes=

[
Ae BTe
Be −Ce

]
(38)

Recall that to obtain the same form of the stabilized element matrix for non-a�ne and
non-simplicial elements would have required a projection operator whose range is the space
[∇ · Vh]. Even for a partition consisting of parallelograms or parallelepipeds this entails an
expansion of a(x) that is not necessarily bene�cial to the method. Consider, for example,
rectangular elements in two space dimensions. If k=2, then on each element Vh contains
functions that are linear combinations of the monomials

1; x; y; x2; xy; y2; x2y; xy2; x2y2

and we must choose

a(x)= (1; x; y; x2; xy; y2; xy2; x2y)

Note that a(x) and the original biquadratic basis di�er only by the higher-order term x2y2 and
so the polynomial pressure projection will be almost identical to the pressure itself. As a result,
a method implemented with this choice of a(x) will most likely be
unstable.
In contrast, the de�nition of �m employed in our method requires the linear basis vector

a(x)= (1; x; y)

Besides leading to a simpler and more e�cient implementation, this choice also provides
for better stabilization because pressure projection eliminates all higher order terms from the
pressure �eld. Thus, instead of changing a(x) we will also consider a variant of our method
where Be is used in place of B̃e regardless of the partition type.

4. NUMERICAL RESULTS

The results in this section are for elements based on equal-order interpolation of velocity and
pressure. Element types considered for 2D problems include the three node triangle (TRIA3),
six node triangle (TRIA6), four node quadrilateral (QUAD4), and nine node quadrilateral
(QUAD9). Element types for 3D problems include the four node tetrahedron (TET4), ten node
tetrahedron (TET10), eight node hexahedron (HEX8), and 27 node hexahedron (HEX27).
The modi�ed bilinear form in (14) was used for all the results shown. Although numerical
results for the bilinear form in (17) are di�erent for non-simplicial elements, we observed no
di�erence in convergence rates or qualitative behaviour by replacing B̃e with Be.
The following error norms are used for the investigation of convergence rates

ehuL2 = ‖uh − u‖0 =
√

d∑
i=1

∫
�
(uh

i − ui)2 d� (39)
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ehuH1 = ‖uh − u‖1 =
√

d∑
i=1

∫
�

∇(uh
i − ui) · ∇(uh

i − ui) d� (40)

ehpL2 = ‖ph − p‖0 =
√∫

�
(ph − p)2 d� (41)

where d is the spatial dimension and (uh
i ; p

h
i ) is the �nite element approximation of the exact

solution (ui; p).
We recall that; see [1], for all su�ciently smooth u and p there exist functions uhI ∈Vh

and ph
I ∈ Sh, such that

‖uhI − u‖06Chk+1‖u‖k+1 (42)

‖uhI − u‖16Chk‖u‖k (43)

and

‖ph
I − p‖06Chk+1‖p‖k+1 (44)

respectively. If �nite element solutions converge at the same rates as the interpolants, we say
that the method is optimal. However, our method uses pressure projection into a polynomial
space of one degree less than the space used to de�ne Sh, and so, instead of (44), optimal
rates for the pressure should be of one degree less than indicated by this bound. In the
numerical studies we use spaces Rk with k=1 and k=2. Therefore, our method will be
optimally accurate if

ehuL2 =O(h2); ehuH1 =O(h) and ehpL2 =O(h) (45)

for k=1, i.e. for TRIA4, QUAD4, TET4 and HEX8 elements, and

ehuL2 =O(h3); ehuH1 =O(h2) and ehpL2 =O(h2) (46)

for k=2, i.e. for TRIA6, QUAD9, TET10 and HEX27 elements.
The �rst example is for a unit square with �=1 and the smooth exact solution

u1 = x + x2 − 2xy + x3 − 3xy2 + x2y (47)

u2 =−y − 2xy + y2 − 3x2y + y3 − xy2 (48)

p= xy + x + y + x3y2 − 4=3 (49)

where

u=(u1; u2) (50)

The values of u on the boundary of the square are constrained to those given by (47)
and (48). To remove the constant pressure mode from the numerical solution,
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Figure 1. Example triangular mesh and error norms for �rst example.

the constraint
∫
�
p(x) d�=0 (51)

is also imposed. The term f is obtained by substituting the exact solution into (6).
Plots of the error norms versus element length h are shown in Figure 1. An example

triangular mesh is also shown in the �gure. The observed convergence rates for the velocity
�eld are identical with the optimal rates in (45)–(46). For k=1 convergence of the pressure
error ehpL2 is better than the expected optimal rate indicated in (45). Instead of line segment
slopes near 1, they are between 1.5 and 2. This behaviour was observed for a variety of other
exact solutions. Nevertheless, for k=2 we see that pressure error does converge according to
(46) and so, it seems safe to conclude that the better convergence rate will likely be con�ned
to the lowest order case only.
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Table I. Solution errors for di�erent stabilized elements normalized with respect to results for their
stable Taylor–Hood counterparts.

1=h etype ehuL2 ehuH1 ehpL2 ediv etype ehuL2 ehuH1 ehpL2 ediv �ediv

8 TRIA6 0.999 1.001 3.02 1.000 QUAD9 1.012 1.004 1.36 6.9 0.15
16 TRIA6 1.000 1.000 3.24 1.000 QUAD9 1.004 1.001 1.12 13 0.18
32 TRIA6 1.000 1.000 3.34 1.000 QUAD9 1.001 1.000 1.03 26 0.19
40 TRIA6 1.000 1.000 3.36 1.000 QUAD9 1.001 1.000 1.02 32 0.19
48 TRIA6 1.000 1.000 3.37 1.000 QUAD9 1.001 1.000 1.01 38 0.20
56 TRIA6 1.000 1.000 3.37 1.000 QUAD9 1.000 1.000 1.01 45 0.20

For purposes of comparison, Table I presents the results of Figure 1 for TRIA6 and QUAD9
elements normalized with respect to those of their stable Taylor–Hood counterparts P2-P1
and Q2-Q1, respectively. Also shown in the table are normalized values of the maximum
divergence error in an element de�ned as

ediv = max
e

∣∣∣∣
∫
�e

u · n d�e
∣∣∣∣ (52)

where �e is the boundary of element e and n is the unit outward normal of �e. The normal-
ized velocity error norms are very close to unity for both the TRIA6 and QUAD9 stabilized
elements. Compared with their stable counterparts, the pressure errors are about three times
greater for the TRIA6 element and about the same for the QUAD9 element. The normalized
maximum divergence errors are about the same for the TRIA6 and P2-P1 elements. Somewhat
unexpected are the signi�cant di�erences in maximum divergence errors between the QUAD9
stabilized and Q2-Q1 stable elements. On closer examination, it was found that the maxi-
mum divergence errors for meshes of Q2-Q1 elements are much lower than those for P2-P1
meshes. The �nal column in Table I, designated as �ediv, shows QUAD9 results normalized
with respect to P2-P1 rather than Q2-Q1. The �nal two columns in Table I show that the
maximum divergence errors for QUAD9 are greater than those for Q2-Q1 but smaller than
those for P2-P1. Considering the results in Table I, there is no clear advantage of the stabi-
lized quadratic elements over their stable counterparts in terms of accuracy for this example.
The stabilized elements do have the advantage of simpler computer implementation since all
nodes have the same degrees of freedom. In addition, some researchers have found that sta-
bilized element formulations can lead to improved performance of iterative solvers, see e.g.
Reference [24].
We note that better pressure accuracy for TRIA6 elements and lower maximum diver-

gence errors for QUAD9 elements can be achieved by replacing the constant 1=�e in (32)
by �=�e where � is a positive dimensionless parameter greater than 1 for TRIA6 elements
and less than 1 for QUAD9 elements. Although such ‘tuning’ can lead to improved accu-
racy, the asymptotic rates of convergence are no better than those for �=1. In addition,
proper selection of � may not always be clearcut. A detailed analysis may reveal a simple
and e�ective method for choosing �, but the results obtained to date for �=1 have been
satisfactory.
Similar results to those in Table I are shown in Table II for TRIA3 results normalized with

respect to those for the stable MINI element. The MINI element is a P1-P1 element with the
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Table II. Solution errors for TRIA3 stabilized element normalized with respect
to results for the stable MINI element.

1=h ehuL2 ehuH1 ehpL2 ediv

8 0.892 0.985 0.588 0.976
16 0.890 0.996 0.583 0.976
32 0.889 1.000 0.565 0.976
40 0.889 1.001 0.556 0.976
48 0.889 1.001 0.549 0.976
56 0.889 1.001 0.542 0.976

Figure 2. QUAD4 �nite element meshes used for second example.
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Figure 3. Example quadrilateral mesh and error norms for second example.

velocity �eld enriched by the cubic bubble. For a description of the Taylor–Hood and MINI
elements, see e.g. Reference [25]. The stabilized TRIA3 element has slightly better pressure
accuracy than the MINI element for this example.
The second example uses the same exact solution, but now the square domain has three

circular cutouts. Note that it is necessary to adjust the constant value of 4
3 in (49) to satisfy

(51). The four QUAD4 meshes used in this example are shown in Figure 2. Meshes for the
other 2D element types were obtained from the QUAD4 meshes by adding nodes and splitting
elements as needed. Plots of the error norms for the di�erent element types along with an
example mesh are shown in Figure 3. In this �gure, he=1=

√
Ne where Ne is the number

of quadrilateral elements in the mesh. As expected, the error norms become smaller as the
meshes are re�ned.
The third example has all velocities constrained to zero on the boundary of a unit square.

In addition, a concentrated load in the direction (1;−1) is applied to the centre node. The
calculated velocities and pressures are shown in Figure 4 along with the QUAD4 �nite element
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Figure 4. Mesh and calculated responses for concentrated load applied
at centre of mesh for third example.

mesh. The purpose of this example is to demonstrate that a point singularity does not cause
velocity or pressure oscillations throughout the entire mesh. Although not shown, similar
results were obtained for the other three 2D element types.
The �nal example is for a unit cube with �=1 and the smooth exact solution

u1 = x + x2 + xy + x3y (53)

u2 = y + xy + y2 + x2y2 (54)

u3 =−2z − 3xz − 3yz − 5x2yz (55)

p= xyz + x3y3z − 5
32 (56)

The values of u on the boundary of the cube are constrained to those given by (53)–(55)
and the constant pressure mode is removed by the constraint in (51). As before, f is obtained
by substituting the exact solution into (6).
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Figure 5. Example tetrahedral mesh and error norms for �nal example.

Plots of the error norms versus element length are shown in Figure 5. An example tetrahe-
dral mesh is also shown in the �gure. As was the case for the 2D example, the convergence
rates for ehuL2 and ehuH1 coincide with the optimal rates for k=1 and k=2 given in (45) and
(46), respectively. Again, for k=1, that is for TET4 and HEX8 elements, the line segment
slopes for ehpL2 are greater than 1. Only two data points for the TET10 and HEX27 elements
could be calculated because of computer memory limitations. Nevertheless, when k=2 the
slopes are closer to the values indicated by (46).
As a �nal comment, the pressures at two corners for the TET10 mesh were constrained ac-

cording to (56) in this example. No constraints on pressures other than (51) were made
for the other three element types. The reason for doing this for the TET10 mesh is as
follows. The number of elements containing nodes with co-ordinates (1; 1; 0) and (0; 0; 1)
equals one. In addition, the velocity degrees of freedom of the two elements containing these
nodes are all constrained. As a result, there are two zero eigenvalues in addition to the zero
eigenvalue for the constant pressure mode. This is related to the fact that there are four
zero eigenvalues for a single TET10 element with all of its velocity degrees of freedom
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constrained. The situation is identical for a similarly constrained stable P2-P1 Taylor–Hood
element.

5. CONCLUSIONS

A new stabilized mixed method for the incompressible Stokes equations is proposed and tested
numerically. Rather than using the residual of the momentum equation, our method accom-
plishes stabilization by penalizing the attendant velocity–pressure mismatch in equal-order
�nite element approximations. As a result, the new method has several important compu-
tational properties, including a completely local implementation. It also leads to symmetric
linear systems and does not require choice of a mesh-dependent stabilization parameter or cal-
culation of second-order derivatives. Numerical examples presented in this paper demonstrate
the very good stability and accuracy properties of the new method.
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